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In order to investigate the origin of large price fluctuations, we analyze stock price changes of ten frequently
traded NASDAQ stocks in the year 2002. Though the influence of the trading frequency on the aggregate
return in a certain time interval is important, it cannot alone explain the heavy-tailed distribution of stock price
changes. For this reason, we analyze intervals with a fixed number of trades in order to eliminate the influence
of the trading frequency and investigate the relevance of other factors for the aggregate return. We show that
in tick time the price follows a discrete diffusion process with a variable step width while the difference
between the number of steps in positive and negative direction in an interval is Gaussian distributed. The step
width is given by the return due to a single trade and is long-term correlated in tick time. Hence, its mean value
can well characterize an interval of many trades and turns out to be an important determinant for large
aggregate returns. We also present a statistical model reproducing the cumulative distribution of aggregate
returns. For an accurate agreement with the empirical distribution, we also take into account asymmetries of
the step widths in different directions together with cross correlations between these asymmetries and the mean
step width as well as the signs of the steps.
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I. INTRODUCTION

The mechanics of stock price changes were studied al-
ready more than 100 years ago, when Bachelier modeled
price movements as a diffusion process with Gaussian fluc-
tuations �1�. However, empirical studies show that the distri-
bution of returns has heavy tails �2–13�, meaning that events
with large price changes are much more probable than in a
Gaussian distribution. In addition, the functional form of the
distribution stays similar if the return is aggregated on very
different time scales from seconds to months, approximating
a Gaussian distribution only if the time scale becomes very
large �2,3�.

These findings would suggest that stock returns have a
Lévy-stable distribution �2,13–15�. In a Lévy flight, the sec-
ond moment would be divergent and extreme returns aggre-
gated over a long time would be determined by very large
price jumps on smaller time scales. However, empirical stud-
ies find evidence that the tail of the return distribution fol-
lows a power law with exponent around �−1=3 so that it
does not agree with the stable Paretian hypothesis
�3–7,16–21�.

The cause of the fat tails is currently a subject of great
interest �22–26�. Farmer et al. find that the distribution of
returns due to a single trade �tick returns� is similar to the
distribution of returns aggregated on longer time scales with
the same tail exponent �25�. Although the tail exponent is
outside the Lévy regime 0��−1�2, they argue that similar
to a Lévy flight both distributions are caused by the same
microscopic mechanism, so that large aggregate returns are
due to single exceptionally large tick returns. Plerou et al.
describe the price movements as a diffusion process with a
fluctuating diffusion constant and relate the distribution of
aggregate returns to the distribution of the variance of the
tick returns �26�.

In the present paper, we investigate the transition from
tick returns to returns aggregated in intervals with a larger
number of trades. It is well documented �e.g., in �27,28�� that
the number of trades in a time interval is an important deter-
minant of the aggregate return. However, the trading fre-
quency alone cannot account for the observed fat tailed dis-
tribution of aggregate returns �26,29�. Thus, we remove the
direct influence of the trading frequency by analyzing inter-
vals with a constant number of trades so that effects due to
other quantities like the tick return size are more clearly vis-
ible.

Similar to the work of Plerou et al. �26�, this study exam-
ines price movements as a diffusion process. Our results for
intervals with a constant number of trades confirm some of
their findings for time intervals, specifically the result that
the mean square of the tick return �here the mean absolute
tick return� is an important determinant for large aggregate
returns. However, our study goes considerably beyond this
work. While Plerou et al. compare the exponents of the dis-
tributions and conclude that the power-law tails of the aggre-
gate return are due to the distribution of the variance of the
tick returns, we actually study the intervals with the largest
aggregate returns and check which quantities lead to these
specific events. This way, we can directly study the influence
of each quantity on the aggregate return. Using this informa-
tion, we also present a statistical model illustrating the
mechanism leading to large price fluctuations.

Moreover, we find that the tick return size �absolute tick
return� can well characterize an interval of many trades be-
cause it is long-term correlated in tick time �compare
�30–39��. According to the central limit theorem, indepen-
dent tick returns would in aggregation lead to Gaussian-
distributed returns, but due to the correlations, the fluctua-
tions of the mean tick return size lead to the non-Gaussian
behavior of the aggregate return. In this picture, large aggre-
gate returns do not occur because of a few very large tick
returns, but rather when the average tick return is large, so
that even Gaussian fluctuations in the direction of the trades*Electronic address: pw@thp.uni-koeln.de
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can lead to aggregate returns larger than in a Gaussian dis-
tribution.

The remainder of this paper is organized as follows: Sec-
tion II shows our model for the price diffusion process, in
Sec. III we describe the data set used for this study, Sec. IV
shows the influence of the tick return size on the aggregate
return, while Sec. V focuses on the influence of differences
in the direction of tick returns �number difference�. Section
VI compares the number difference and the flow of market
orders, and in Sec. VII we present a statistical model which
approximates the distribution of aggregate returns. We con-
clude with a discussion of our results in Sec. VIII.

II. MODEL

We study intervals with a fixed number of N=100 trades.
If the price of a stock before the ith trade is si, we define the
return due to a single trade, the tick return, as

�gi = ln�si+1� − ln�si� . �1�

The interval Ij contains all N trades with index i between
jN and �j+1�N, so the aggregate return Gj is given by the
sum over all �gi with i�Ij:

Gj = �
i�Ij

�gi. �2�

We want to discuss two special cases in order to analyze the
mechanism leading to large aggregate returns Gj. In the first
case, Gj is dominated by one �or a few� extremely large
�gi0

max, so that

Gj = �gi0
max + �

i�Ij,i�i0

�gi � �gi0
max. �3�

Thus, Gj becomes large if �gi0
max is exceptionally large.

In the second case, we assume that there is no extremely
large tick return dominating the aggregate return, so that we
focus on the average size �gj of the nonzero tick returns,
which is defined by

�gj =
1

nj
�

�gi�0,i�Ij

��gi� . �4�

Here, nj is the number of �gi�0 in the interval Ij. Neglecting
asymmetries in the �gi, we can replace all �gi�0 by
sgn��gi��gj and approximate the aggregate return by

Gj � �gj �
�gi�0,i�Ij

sgn��gi� = �gj�Nj , �5�

where �Nj =��gi�0,i�Ij
sgn��gi� is the number difference.

Similarly, Gj can be described as a diffusion process with

�Gj
2	 � DjN , �6�

where the diffusion constant Dj =
nj

N �gj
2 varies due to the

varying step width �gj and the number nj of nonzero tick
returns.

In the approximation given by Eq. �5�, we can study the
influence of the mean size of the tick returns as well as
asymmetries in their direction. A large aggregate return can

occur if the price moves more often in one direction than in
the other. Thus, with large temporary correlations between
the signs, even small tick returns could compose a large Gj.
On the other hand, if �gj is larger, even a small asymmetry
in the signs can lead to a large return.

The two approximations given in Eqs. �3� and �5� are
analyzed in Secs. IV and V of this paper, but in Sec. VII we
also consider the error term neglected in Eq. �5�. An exact
formulation is written

Gj = �gj�Nj +
2nj

+nj
−

nj
��gj

+ − �gj
−� , �7�

where �gj
+ and �gj

− are the average tick returns in the posi-
tive and negative directions while nj

+ and nj
− are the numbers

of non-negative tick returns in the positive and negative di-
rections.

III. DATA ANALYSIS

We analyzed the order book data of the year 2002 from
Island ECN for the ten most frequently traded stocks �40�.
Since the Island ECN is a secondary market where only part
of the whole stock volume is traded, we also studied the
index fund QQQ which was mainly traded via Island until
September 2002. Since our results for the ten stocks and
QQQ are similar, we find no evidence that secondary market
characteristics of Island affect our analysis negatively.

In an electronic market place like Island, people can place
limit orders to buy or to sell at a given or better price �limit
price�, which is specified in the order. These orders are stored
in the order book, and they are only executed when the ac-
tual stock price reaches the limit price. A trade is initiated by
a market order indicating that someone wants to buy or sell
immediately at the best available price. Such a market order
executes the limit orders offering the best prices until the
number of shares specified in the market order is traded.

Our data set contains information about every limit order
so that we are able to reproduce the market situation at each
instant of time. We combine those limit order executions
with identical time stamps as they reflect the same market
order. Therefore, we can analyze the impact of each single
market order on the price. In this analysis, the price is de-
fined as the midquote price which is the mean of the best
available buy �bid� and sell �ask� limit prices �quotes�. We
study intervals with a fixed number of N=100 market orders
and have approximately 100 000 intervals in our data set for
ten stocks. Thus, on average a 100-trade interval corresponds
to about 10 min, but the trading frequency fluctuates strongly
so that 100 trades can correspond to time intervals with very
different lengths.

We determine the midquote price si just before the execu-
tion of the ith market order. Since most trades change the
price just by the size of the gap between the best and second
best limit prices �25�, the tick return �gi corresponds to the
gap size. We note that the price can �and often does� change
between two consecutive market orders due to placement or
cancellation of limit orders so that �gi does not provide a
direct estimate of the gap size. We normalize the tick returns
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�gi by the standard deviation of the aggregate return Gj for
each stock individually so that we can combine the results
for different stocks.

IV. INFLUENCE OF THE SIZE OF TICK RETURNS

First, we investigate the question whether large tick re-
turns caused by large gaps in the order book can be respon-
sible for large aggregate returns. To this end, we start with
the approximation shown in Eq. �3� where a few extremely
large tick returns �corresponding to some very large gaps in
the order book� lead to a very large aggregate return Gj. In
order to test this hypothesis, we analyzed the five largest tick
returns �gj

max+ with the same sign as the aggregate return Gj
�i.e., the five largest positive �gi if Gj �0 and the five largest
negative �gi for Gj �0� in each time interval. To this end, we
sort the intervals by �Gj� and plot the �gj

max+ against the rank
of the interval according to its return �Gj�.

Figure 1�a� shows the values of these �gj
max+ in intervals

with small Gj �0 on the left while the values for large re-
turns exceeding five standard deviations can be found on the
right. Since there are large fluctuations in the data, we
smoothed the curves by averaging over 100 intervals. The
�gj

max+ grow by a factor of 2 between small and very large
returns �Gj�. When aggregated, these five largest �gj

max+ can
reach about three standard deviations, which is almost half of
the largest aggregate returns.

In Fig. 1�b�, we plot the five largest tick returns �gj
max−

with the opposite direction as the aggregate return against

their rank. The �gj
max− behave similarly to the �gj

max+, though
the increase for large aggregate returns is slightly weaker.
However, even for the largest aggregate returns the differ-
ence between the �gj

max+ and �gj
max− is rather small, so that

there are also large tick returns reducing the aggregate return.
Our findings suggest that in the data set studied single

exceptionally large tick returns might not be the generic
mechanism leading to large aggregate returns. This result
seems to contradict the experience that there often are price
“jumps” due to new public information—e.g., earnings an-
nouncements or monetary policy announcements. However,
these jumps usually appear together with a largely increased
trading activity �volume�, so that there are many trades oc-
curring within a short time. Hence, a 100-tick interval could
correspond to a rather short time period, so that its aggregate
return might look like a price “jump” in real time but actu-
ally consists of many not too large tick returns, which is
visible in tick time. This interesting subject could be inves-
tigated in a further analysis.

In the following, we want to focus not on the extreme tick
returns, but on the influence of their mean value. More pre-
cisely, we analyze Eq. �5� and the mean tick return �gj of all
nonzero ��gi� in the interval Ij as defined in Eq. �4�. A density
plot of �Gj� against �gj is shown in Fig. 2. It seems that
extremely large returns Gj correspond to larger average tick
returns �gj, but the broad distribution suggests that the ex-
planatory power of �gj alone for the aggregate return Gj is
small, which is confirmed by the low correlation coefficient
R2=0.07 of a linear regression.

In order to clarify the relation between the extreme values
of �Gj� and �gj, we sort the intervals by �Gj� and plot �gj
against the rank of the interval according to its return �Gj�. In
Fig. 3 �black curve�, we see that large returns �Gj� coincide
with larger tick returns as �gj changes by a factor of 2 from
very low aggregate returns to large returns of several stan-
dard deviations. In comparison with the largest tick returns
�gj

max+ shown in Fig. 1, the change of a factor of 2 is similar,

FIG. 1. �Color online� Five largest price changes �a� �gj
max+ and

�b� �gj
max− due to a single trade with �a� the same and �b� the

opposite sign as the aggregate return in that 100-tick interval, plot-
ted against the rank of the corresponding aggregate return �Gj� for
the combined data of ten Nasdaq stocks in 2002 �smoothed by
averaging over 100 intervals�. For large �Gj�, the size of the �gj

max+

increases by a factor of 2 while the increase in the �gj
max− is slightly

smaller. The sum over all five �gj
max+ reaches more than three stan-

dard deviations for intervals with extremely large �Gj�, but the fluc-
tuations in the opposite direction are almost equally large.

FIG. 2. Density plot of the 100-trade return �Gj� of ten Nasdaq
stocks against the average return of a single trade �gj for each
interval. The points are coded from light gray to black indicating
the number of events from 1 to more than 500. A linear regression
has only a small correlation coefficient R2=0.07.

ANALYSIS OF AGGREGATED TICK RETURNS:… PHYSICAL REVIEW E 75, 016105 �2007�

016105-3



but the mean �gj is 2–4 times smaller than the largest tick
returns.

This finding can be explained by the presence of autocor-
relations in the time series of �gi, which can be illustrated
when we shuffle the data for each stock by exchanging each
tick return with another randomly chosen tick return. The
light gray curve in Fig. 3 shows that for shuffled data �gj
increases only marginally for large aggregate returns, sug-
gesting that autocorrelations of the tick returns have a strong
influence on the mean tick return size �gj. Indeed, we find
that the absolute values ��gi� of the tick return are long-range
correlated in tick time with a correlation function decaying
like �i−0.16 for large time lags �i= �i1− i2�, as shown in Fig. 4.
If these correlations are destroyed by shuffling, in each inter-
val of 100 trades only a few large tick returns remain so that
the average over these 100-tick returns approximates the glo-
bal mean of all tick returns in the data set.

In contrast, in the empirical unshuffled data correlations
lead to intervals where many tick returns are large, so that
the average tick return size is also large. The average tick
return size �gj can well characterize the interval only be-
cause these autocorrelations exist. It turns out that the in-
crease of �gj by a factor of 2 is the main effect where the
original empirical data deviate significantly from shuffled
data. Hence, we suggest that fluctuations of the tick return
size are responsible for the non-Gaussian fluctuations of the
aggregate return.

Using Eq. �5�, we can estimate whether the change by a
factor of 2 of the average tick return alone is enough to
explain large aggregate returns Gj of more than five standard
deviations. To this end, we focus on the intervals with the 50
largest aggregate returns ranging from approximately 4 to

almost 8 standard deviations. Here, we find that �gj fluctu-
ates between 0.14 and 0.35. Assuming uncorrelated returns,
�Nj should be of the order 
N�10 if each trade would lead
to a price change, but normal fluctuations could well lead to
�Nj twice as large as 
N, so that large tick returns together
with fluctuations in the number difference could explain the
large aggregate returns we find in our data set.

Thus, we find that in intervals with 100 trades large �Gj�
do not mainly depend on single extremely large tick returns.
It rather turns out that correlations between the tick returns
lead to large average tick returns �gj in an interval, and the
fluctuations of �gj can account for the non-Gaussian distri-
bution of the aggregate returns.

V. NUMBER DIFFERENCE

The diffusion process of aggregate returns is not only in-
fluenced by the step width �i.e., the tick return size�, but also
by the direction of the steps. Therefore, we now analyze the
influence of the number difference �Nj in Eq. �5�. In order to
treat positive and negative aggregate returns in the same
analysis, it is useful to replace �Nj by the sign-adapted num-
ber difference

�nj = sgn�Gj��Nj . �8�

A positive value of �nj indicates that the price tends to move
in one specific direction leading to an aggregate return with
the same sign. �nj can be negative if there are a few large
tick returns determining the direction of the aggregate return,
but also many small tick returns with the opposite direction
which do not affect the aggregate return very much. Figure 5
shows a density plot of the aggregate return �Gj� against the
sign-adapted number difference �nj. A linear regression
yields an R2 of 0.32, a large correlation coefficient confirm-
ing the visual impression that �nj and �Gj� are strongly con-
nected. We can also see that �nj is mostly positive for large
returns Gj, so that each large price change is accompanied by
a certain sign-adapted number difference �nj.

We now plot, in Fig. 6, �nj against the rank according to
�Gj�. We find that except for the largest �approximately 15%�

FIG. 3. �Color online� Black curve: average tick return �gj of
ten Nasdaq stocks plotted against the rank of the corresponding
aggregate return �Gj�, smoothed by averaging over 100 intervals.
Going from the smallest returns �Gj��0 to returns larger than five
standard deviations, �gj increases by a factor of 2. Light gray
curve: after shuffling the tick returns for each stock, the same curve
is only slightly increased for the largest aggregate returns, the effect
is much smaller than for the original data. Blue curve �or dark
gray�: the simulation according to the statistical model discussed in
Sec. VII shows a similar behavior as the empirical data, but in the
simulation �gj is a little larger than the empirical one except for the
largest �Gj� where the simulated �gj is slightly smaller than the
empirical one.

FIG. 4. �Color online� Autocorrelation function of the absolute
value of the tick return ��gi� averaged over the data of ten Nasdaq
stocks in 2002. The function shows a power-law decay in tick time
proportional to �i−0.16 for large �i.
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of the aggregate returns, �nj grows linearly with the rank
while, in Fig. 3, �gj remained almost constant in that region.
For the largest ranks, �n increases more rapidly, so that all in
all the smoothed curve �averaged over 100 intervals� grows
from 0 to 18 between very small and extremely large aggre-
gate returns. Thus, in intervals with very large returns there
are approximately 18 trades pushing the price in one direc-
tion �assuming that all other trades cancel each other out�, so
that even with rather small tick returns this can lead to large
returns in aggregation. Focusing on the 50 largest Gj, we find
that �nj ranges from 4 to 41, clearly above the expected

standard deviation of 10 when assuming uncorrelated returns
and nj =N.

Thus, the fluctuations of �nj around the mean value are
crucial for getting large aggregate returns. The number dif-
ference seems to be the main mechanism affecting the aggre-
gate return since it changes much more drastically than the
tick return size when the aggregate return increases. On the
other hand, when we compare the results to the analysis with
shuffled data �light gray curve in Fig. 6�, it turns out that this
effect is very similar to what happens with random price
changes. Hence, the basic movement of the aggregate return
seems to depend mostly on the number difference, but the
non-Gaussian large aggregate price changes only occur if the
tick returns are large.

VI. MARKET ORDER SIGNS AND DIRECTION OF TICK
RETURNS

It is known that the signs of market orders are strongly
correlated �41,42� which means that there is a large probabil-
ity that a buy market order will be followed by another buy
market order. Thus, it is probable that large number differ-
ences in the direction of tick returns are caused by large
numbers of equally signed market orders. In order to analyze
the relation between the number difference and the market
order flow, we define the difference �nj

m between the number
nj

m+ of market orders with the same direction as Gj and the
market orders with opposite direction nj

m−:

�nj
m = nj

m+ − nj
m−. �9�

In Fig. 7 we plot the sign-adapted number difference �nj
against the market order difference �nj

m. We find a strong
correlation between �nj and �nj

m; a linear regression yields a
correlation coefficient R2 of 0.29. However, there are also
large fluctuations suggesting that the number difference is

FIG. 5. Density plot of the aggregate return �Gj� against the
difference �nj between the number of tick returns with the same
and with the opposite direction as the aggregate return, for ten
Nasdaq stocks. The points are coded from light gray to black indi-
cating the number of events from 1 to more than 600. A linear
regression has a large correlation coefficient R2=0.32.

FIG. 6. �Color online� Black curve: the sign-adapted number
difference �nj is plotted against the rank according to the aggregate
return �Gj� for 10 Nasdaq stocks, smoothed by averaging over 100
intervals. �nj grows from zero to 18. The relation between �nj and
the rank seems to be linear except for the largest 15% of the aggre-
gate returns. A simulation �blue curve �or dark gray�� using a nor-
mal distribution for �Nj leads to nearly the same dependence on the
rank. For shuffled data �light gray curve�, the curve is slightly flat-
ter, but the difference is not large.

FIG. 7. Comparison between sign-adapted number difference
�nj and market order difference �nj

m for ten Nasdaq stocks. The
points are coded from light gray to black indicating the number of
events from 1 to more than 200. The correlation coefficient of a
linear regression yields R2=0.29; thus, there is a strong connection
between the two quantities. On the other hand, the events scatter
widely so that small �n are often linked with large �nj

m and vice
versa.
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also due to order book dynamics—namely, limit order place-
ment and cancellation as well as asymmetries in the order
book. A model for price formation due to these quantities
was recently proposed by Mike and Farmer �43�.

VII. DISTRIBUTION OF AGGREGATE RETURNS AND A
STATISTICAL MODEL

In the first part of this paper, we analyzed the mechanism
leading to large aggregate returns and showed that the vary-
ing step width �gj accounts for the non-Gaussian behavior of
the diffusion process of price movements. Now we want to
use our results in a statistical model and reproduce the cu-
mulative distribution function of the absolute value of the
aggregate return �Gj�.

The model given by Eq. �5� belongs to the well-known
class of stochastic volatility models �see, e.g., �44�� consist-
ing of a noise term multiplied by a time-dependent volatility
giving the magnitude of the fluctuations. In the present paper,
the model is based on a microscopic description of the price
process, so that we can fit the microscopic quantities deter-
mining the aggregate return in order to estimate the param-
eters of the model. In this approach the model is parameter
free in the sense that there are no parameters fitting the ag-
gregate returns directly, though we fit the distributions of its
determinants like the step width �gj and the number differ-
ence �Nj. We also discuss corrections to the model by in-
cluding the tick return asymmetries according to Eq. �7�.

We first analyze the distributions of �gj and �Nj. Figure
8�a� shows the cumulative distribution of �gj in a log-linear
plot. The approximately straight line suggests that the tail
follows an exponential distribution which can be well fitted
with P�x��gj�=e−a�x−x0�/�ḡ where �ḡ�0.12 is the average
of all �gj and the parameters are a=3.6 and x0=0.094. In the
region of the smallest values of �gj �x0 the limited tick sizes
of the different stocks lead to a plateau. In Sec. V we already
found evidence that �Nj behaves similarly to uncorrelated
data since in Fig. 6 the shuffled data show almost the same
dependence on the rank of the corresponding �Gj�. Figure
8�b� shows that indeed �Nj can be well described by a
Gaussian noise with mean 0.24 and standard deviation 9.0.

In order to analyze the accuracy of the approximation
given in Eq. �5�, we simulate two independent time series
according to the fitted functions for �gj and �Nj and build
the aggregate return Gj as the product of �gj and �Nj. In
Fig. 9 we can compare the empirically found cumulative
distribution of aggregate returns �Gj� �circles� to the results of
this simulation �triangles�. The simulation of Eq. �5� leads to
a reasonable agreement with the actual aggregate return, but
it overestimates the probability of large aggregate returns.
We note that the parameters of the simulation are completely
determined by the empirically found distributions of �gj and
�Nj, so that in this sense the simulation of �Gj� has no free
parameters.

In the following, we want to address the remaining devia-
tions of the simulation from the empirical data. Equation �7�
gives an exact formula for Gj and provides a good param-
etrization for the error term which reads

Gj − �gj�Nj =
2nj

+nj
−

nj
��gj

+ − �gj
−� . �10�

We find that the term 2nj
+nj

− /nj has no systematic influence
on the aggregate return since it shows almost no dependence
on the rank according to the aggregate return. In the follow-
ing, we thus approximate it by its average value �2nj

+nj
− /nj	

=28.7, so that the error term is determined by the asymme-
tries �gj

+−�gj
− in the mean tick return size.

FIG. 8. �Color online� Estimation of the parameters for the
simulation �results shown as dotted lines� from empirical data for
ten Nasdaq stocks. �a� The tail of the cumulative distribution of �gj

�line� can be well fitted with P�x��gj�=e−a�x−x0�/�ḡ where �ḡ
�0.12 is the average of all �gj and the parameters are a=3.6 and
x0=0.094. For �gj �x0 the limited tick size leads to a plateau. �b�
The probability distribution of �Nj �line� follows in good approxi-
mation a normal distribution with mean 0.24 and standard deviation
9.0. �c� As a rough approximation, the average of the cumulative
distribution of the positive �line� and negative �dashed line� values
of �gj

+−�gj
− are parametrized proportional to two exponential func-

tions e−a1,2x/�ḡ for ��gj
+−�gj

− � �0.1, with a1=8.0 and a2=4.8
�dash-dotted line�. The simulation �dotted line� uses the adapted
a1=9.0 and a2=2.0 in order to compensate the change in the distri-
bution after taking into account ��gj

+−�gj
−	�gj�Nj

.
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The cumulative distribution of �gj
+−�gj

− is shown in Fig.
8�c�. The main part of the distribution could be well fitted by
an exponential function, but in the tail the distribution be-
comes broader. Thus, we add the term with �gj

+−�gj
− to our

simulation by creating a third independent time series ac-
cording to the empirical distribution of �gj

+−�gj
−. Figure 9

�diamonds� shows that this leads to an even broader distri-
bution of the aggregate return. Since the difference to the
distribution according to Eq. �5� is small, the tick return
asymmetry seems to have only a small influence on the ag-
gregate return.

A more accurate agreement with the empirical data can be
obtained by taking into account correlations between the
quantities involved in the process. The correlation coeffi-
cients between them are shown in the following table where
the correlations between the absolute values are shown in
brackets.

�Nj �gj
+−�gj

− �gj�Nj

�gj −0.02 �−0.07� −0.01 �0.37� −0.01 �0.34�
�Nj 1 −0.35 �0.01� 0.95 �0.87�
�gj�Nj 0.95 �0.87� −0.41 �0.02� 1

�gj and ��Nj� show slightly negative correlations which
might suggest that people act more cautiously when large
tick returns indicate a low liquidity. In these times, traders try
not to place too many consecutive orders with the same sign
because they know that it could lead to a large price change
and increased trading costs. Furthermore, the strong anticor-
relations between �Nj and �gj

+−�gj
− also indicate cautious

traders: If there are large asymmetries, so that, e.g., the posi-
tive tick returns are much larger than the negative ones,
people tend to use the higher liquidity in the negative direc-

tion so that in these times they sell more often than they buy.
For an analysis of the relation between liquidity imbalance
and market efficiency, see, e.g., �45�. The large correlations
between �gj and ��gj

+−�gj
−� show that we can expect large

variations of the tick return in the positive and negative di-
rections when the tick return is, in general, large.

We now want to incorporate correlations in our simula-
tion. The strongest nontrivial correlations appear between
�gj�Nj and �gj

+−�gj
− including also some of the correla-

tions between �gj
+−�gj

− and �gj as well as �Nj. However, it
turns out that the conditional expectation value ��gj

+

−�gj
−	�gj�Nj

is nonlinear, as seen in Fig. 10 �circles� where it
is plotted against �gj�Nj. The function can be well fitted by
−sgn�x���x�	 with �=0.0057 and 	=1.59 �dashed line�.

In order to incorporate this conditional expectation value
into the simulation, we first create three independent time
series for �gj, �Nj, and �gj

+−�gj
−. Then, for each j we add

the conditional expectation value ��gj
+−�gj

−	�gj�Nj
to �gj

+

−�gj
−, according to the value of �gj�Nj for that j. This

method leads to a different distribution for �gj
+−�gj

− than
the initial one, so that we cannot anymore generate �gj

+

−�gj
− from the unconditional empirical distribution. As a

rough approximation, we parametrize this distribution by
two exponential functions e−a1,2x/�ḡ for �gj

+−�gj
−�0.1.

Then, we adapt the factors in the exponent in such a way that
the resulting unconditional distribution fits the empirical one
(a fit to the empirical distribution yields a1=8.0 and a2
=4.8; for the simulation, we use the adapted a1=9.0 and a2
=2.0 �compare Fig. 8�c��). The resulting distribution of Gj
does not depend very much on the exact values of a1,2.

The effect of the correlations represented by the condi-
tional expectation value ��gj

+−�gj
−	�gj�Nj

is very large and
leads to a cumulative distribution of �Gj� �squares in Fig. 9�
very similar to the empirical one �circles�. It is worth noting

FIG. 9. �Color online� Cumulative distribution of the empirical
aggregate return �circles� obtained from ten Nasdaq stocks in com-
parison with different simulations. A simulation of Eq. �5� �tri-
angles� leads to a reasonable approximation of the empirical data,
but it overestimates the probability of large returns. It becomes a
little broader if we add the tick return asymmetry �gj

+−�gj
− accord-

ing to Eq. �7� and simulate independent quantities �diamonds�. The
simulation �squares� matches the empirical data very well if we
incorporate correlations by generating �gj

+−�gj
− according to the

conditional expectation value ��gj
+−�gj

−	�gj�Nj
.

FIG. 10. �Color online� Conditional expectation value ��gj
+

−�gj
−	�gj�Nj

plotted against �gj�Nj �circles�, obtained from the
data of ten Nasdaq stocks. A fit leads to ��gj

+−�gj
−	�gj�Nj

�−0.0057 sgn��gj�Nj���gj�Nj�1.59 �dashed line�. The tick return
asymmetry �gj

+−�gj
− is strongly correlated with the mean tick re-

turn size �gj and strongly anticorrelated with the number difference
�Nj. Using the conditional expectation value in the simulation in-
corporates these correlations which allows for the reproduction of
the distribution of aggregate returns.
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that now the largest events are not anymore necessarily the
ones with the largest values of �gj�Nj. Due to the anticor-
relations expressed in ��gj

+−�gj
−	�gj�Nj

, very large values of
�gj�Nj can lead to relatively large values of �gj

+−�gj
− of

the opposite sign reducing the aggregate return.
In addition to the distribution of the aggregate return, the

simulation also agrees with other properties of the empirical
data we found earlier in this paper. In Figs. 3 and 6 we also
plotted the data from the simulation against the rank accord-
ing to the aggregate return �Gj�. For �Nj the simulation
matches the empirical data very well, while in Fig. 3 we see
that the simulated �gj shows the same dependence on the
rank as the empirical data, but it is generally a little larger
than the real one except for the largest aggregate returns,
which might be due to the cutoff around 0.094 we used in the
simulation of the distribution of �gj. We also find that the
role of �gj

+−�gj
− in determining large aggregate returns is a

little overestimated by our simulation, but the simulation
covers the main features of the empirical data although we
neglected many of the subtle relations between the different
quantities.

VIII. DISCUSSION AND CONCLUSION

Our results can be divided into two parts: First, we
showed that the movement of stock prices in intervals with a
constant number of trades can be understood as a diffusion
process with a varying step width, similar to the findings of
Plerou et al. for time intervals �26�. While Plerou et al. use
the shape of the distribution of mean-squared tick returns to
explain the distribution of aggregate returns, we render this
picture more precisely by specifically studying the intervals
with the largest aggregate returns. By analyzing how each
aggregate return is actually composed, we find that Gaussian
fluctuations of the number difference determine the basic
price movement, but the non-Gaussian large price changes
are due to changes in the tick return size coinciding with
large number differences at the same time. Thus, large ag-
gregate returns do not appear only because the mean tick
return size is large, but only if there is also a large number
difference. However, we confirm the result of �26� that the
non-Gaussian shape of the mean tick return size is an impor-
tant determinant of non-Gaussian aggregate returns. We also

find that the large influence of the tick return size is caused
by its autocorrelations assuring that in a 100-tick interval one
can find many large tick returns so that the mean value of the
tick return can be large. In such intervals, the price change in
response to a trade is large, which can be referred to as a
period of low liquidity. Though liquidity measures usually
involve the number of shares �for instance, the market depth
is defined as the number of traded shares needed to change
the price a given amount�, it has been shown �25� that the
traded volume usually matches the volume available at the
bid or ask price. Thus, the return due to a single trade can be
seen as an �inverse� liquidity measure, so that our results
suggest that the diffusion process of stock returns depends
largely on fluctuations in the liquidity, in agreement with the
findings of previous works �23–26�.

In the second part of this paper, we found that the distri-
bution of aggregate returns can be reasonably approximated
by simulating the microscopic quantities mean tick return
size and number difference according to their empirically
found distributions. A more accurate agreement can be ob-
tained by taking into account asymmetries in the tick return
size in the positive and negative directions as well as corre-
lations between the different quantities.

To conclude, we found evidence that price fluctuations in
intervals with a constant number of trades can be described
by a diffusion process with a varying step width. The long-
term autocorrelations in the tick return size make sure that
periods of low liquidity, where the price change due to a
trade is large, last long enough to cause large aggregate re-
turns in intervals with many trades. Our results suggest that
the power-law distribution of aggregate returns might not be
universal but rather depends on a more complicated mecha-
nism which is a combination of the dynamics of the trading
frequency, the dynamics of the step width, and the Gaussian
process of the step direction.
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